

THE BDS APPLICATIONS ON CIVIL TRANSPORT AIRCRAFTS

Commercial Aircraft Corporation of China (COMAC)

JIANG, Xin

November, 2018

2 Applications

Rapid growth of civil aviation requires safe & efficient navigation technologies

Performance Based Navigation (PBN)

Onboard Navigation Equipment

Advantages of Multi-constellation GNSS

Onboard Navigation	Pros	Cons	Equipment
Satellite-based	Global coverage High accuracy	Vulnerability from interference	GNSS
Ground-based	High reliability	Limited coverage Low accuracy	NDB, VOR, DME, ILS
Inertial navigation	Work without external signal source	Error accumulation	IRS

Redundant backup

Improved position and time accuracy

Reduced signal acquisition time

Ability to resist single GNSS system fail

Inertial navigation

Aviation Requirements for Multi-constellation GNSS

2 Applications

- The BDS Applications in COMAC
- Future Plan in COMAC

Applications

2.1 The BDS Applications in COMAC

COMAC Civil Transport Aircrafts

ARJ21

A turbofan regional aircraft

- Layout: 78 to 90 seats
- Range: 2225 to 3700 KM
- Production Certificate (PC)
 from CAAC
- Route operation

C919

A large civil jet aircraft

- Layout: 158 to 168 seats
- Range: 4075 to 5555 KM
- Finished the first test flight
- Will be delivered in 3 to 4
 years

CR929

A dual-aisle civil aircraft

- Layout: 280 seats
- Range: 12000 KM
- The Joint Conceptual

 Development Program of

 CR929 has been initiated

supporting BDS/GNSS

BDS/GNSS Based GBAS Installation in Dongying Airport

- Flight experiment at Dongying airport (Oct. 2017)
 - 5 days4 sorties10 hours data

No.	Test subjects	Altitude
1	Circle Flight	10000ft
2	Circle Flight	5000ft
3	Arc Flight	2000ft
4	Level Flight	2000ft
5	Level Flight	3000ft
6	Level Flight	4000ft
	Approach/	
7	Continuous	As required
	Approach	

Average number of BDS satellites in view & GDOP

BDS vertical positioning accuracy of every sortie

	GPS & BDS Accuracy (95%)	GPS	BDS
Stand-alone	Horizontal Positioning Accuracy	1.2~3.9m	1.1~3.2m
	Vertical Positioning Accuracy	1.2~7.5m	2.1~8.5m
Differential	GLS Horizontal Positioning Accuracy	0.3~2.0m	0.6~2.0m
Differential GLS Vertic	GLS Vertical Positioning Accuracy	0.8~3.0m	1.1~3.3m

GBAS Signal Coverage Range

BDS short message flight tracking experiment at Yangtai airport (Oct. 2018)

• The unique short message function of BDS provides a new technological approach of real-time flight surveillance, tracking and emergency communication.

BDS short message flight tracking experiment at Yangtai airport (Oct. 2018)

Date	Test Subjects	Time
11-Oct-2018	Taxiing & Circle Flight (10000ft)	3 hours
12-Oct-2018	Circle Flight (30000/32000/35000ft) Through Field (600ft)	3 hours
13-Oct-2018	Circle Flight (10000ft) Through Field (600ft)	2.5 hours

BDS short message flight tracking experiment at Yangtai airport (Oct. 2018)

Test results show that short message success rates meet the designed objectives.

2 Applications

- The BDS Applications in COMAC
- Future Plan in COMAC

Process System

2.2 Future Plan in COMAC

Future plan focus on BDS/GNSS avionics system integration

- Test the interface, functions and performance of onboard BDS/GNSS equipment
- Verify the interaction between BDS/GNSS equipment and Flight Management System (FMS) & Core

2.2 Future Plan in COMAC

Functions and Performance Test

What to test

Sensitivity

Reacquisition Time

Accuracy

Resilience to Interference

Integrity

2.2 Future Plan in COMAC

Interaction Verification

2.2 Future Plan in COMAC

Flight test plan

2017-2018

No Interactions to other system

Partly integrated to other system

2018-2020

Totally integrated flight test

2020-

- Installed in main cabin
- Not affect other avionics
- Verify functions and performance under real environment
- BDS short message flight tracking experiment

- Installed in forward EE cabin
- Partly integrated with avionics
- Verify integration, navigation & guidance capability
- Complete integration
- Verify performance of aircraft when using BDS/GNSS as navigation resource

2 Applications

- COMAC will definitely push forward the applications of BDS/GNSS on domestic civil aircraft.
- We suggest to strengthen international cooperation, and co-ordinate resources with navigation system service providers and airborne system providers.
- We will work with international experts to make BDS onboard equipment MOPS and other related RTCA standards get approved, so BDS can provide better service to international civil aviation.

