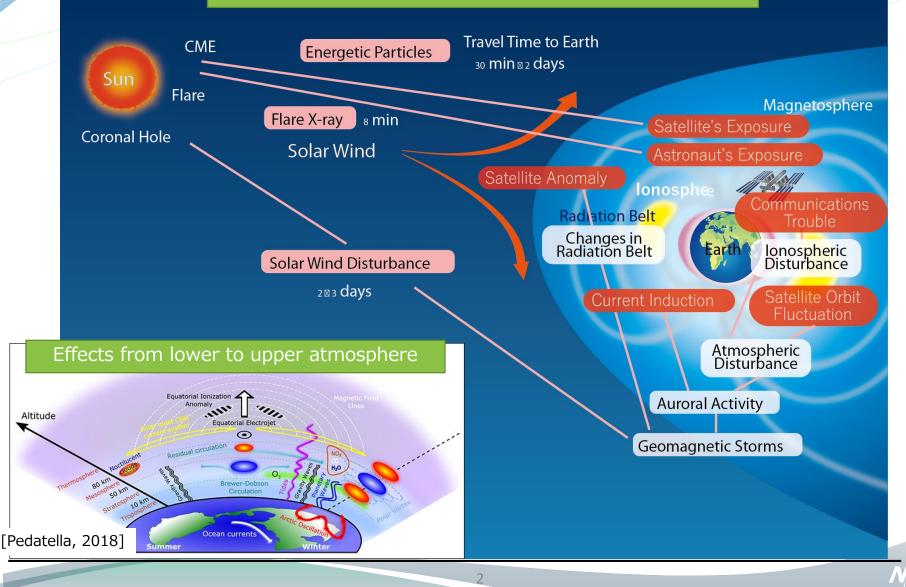
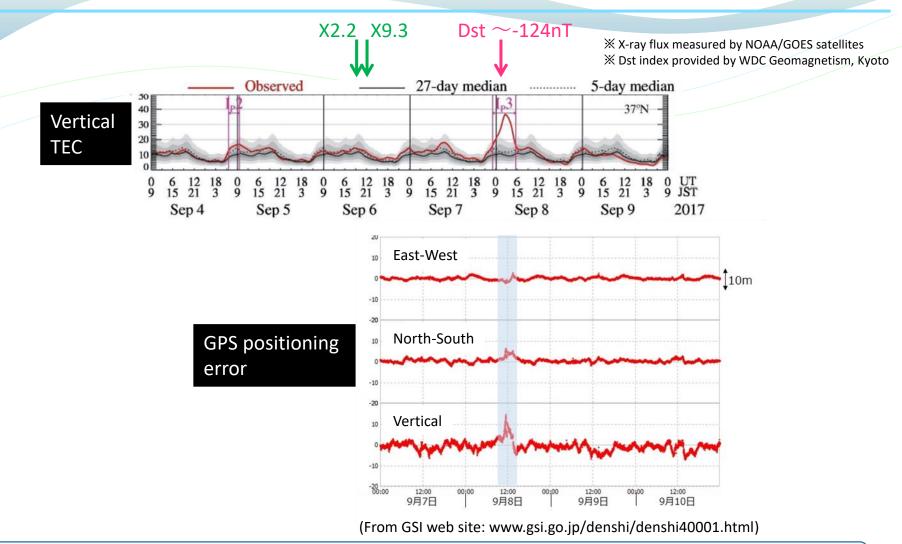


National Institute of Information and Communications Technology

NICT's Space Weather Research & Operation for GNSS


Hidekatsu Jin

Senior Researcher, Space Environment Laboratory National Institute of Information and Communications Technology, Japan



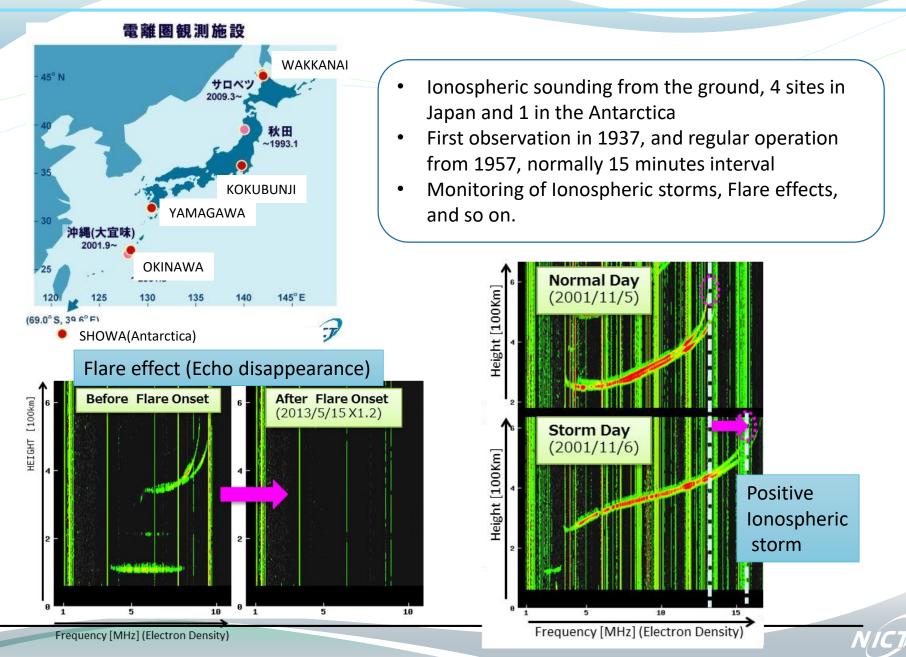
Space Weather

space weather from sun to earth

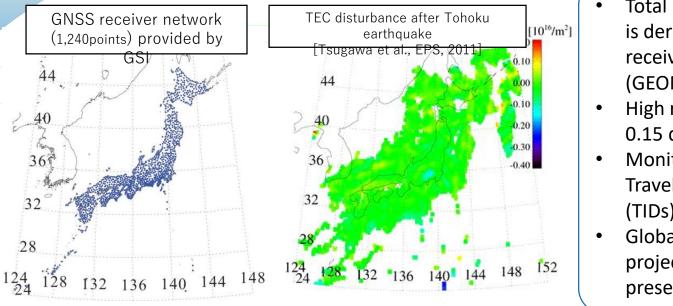
Impact of SW on GNSS

- The Ionospheric storm on Sep. 8, 2017 made GPS positioning error \sim 3 times larger.
- X 9.3 flare caused rapid TEC increase (SID) on dayside, causing loss-of-lock for GNSS signals, degradation of SBAS availability, degradation of Precise Point Positioning (PPP) accuracy [Berdermann et al., 2018].

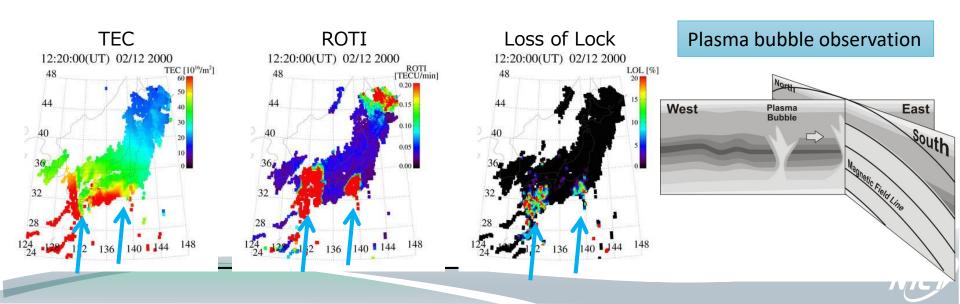
NICT Space Weather Forecast Center


Operational SW nowcast/forecast as an ISES member Solar flare occurrence High-energy particle condition at geosynchronous orbit Geomagnetic field condition over Japan ۲ Web access : 160,000/month Ionospheric condition over Japan No. of e-mail address : 10,000 And also on Facebook, twitter NICT million.

Domestic Users:

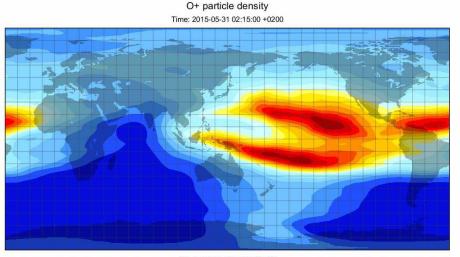

satellite operator, aviation office and companies, power plant companies, HF telecommunicators / broadcasters, resource survey, Univ. and research institutes, amateur radio operators

Ionospheric Monitoring by Ionosonde


5

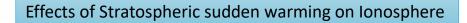
Ionospheric Monitoring by TEC

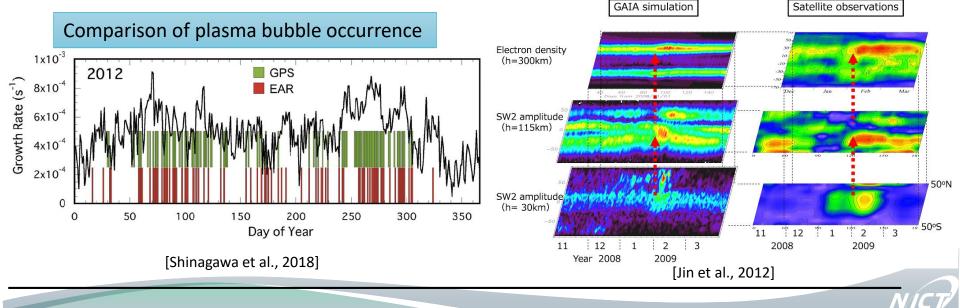
- Total Electron Content (TEC) map is derived from a dense GNSS receiver network in Japan (GEONET) provided by GSI
- High resolution (30sec, 0.15 by 0.15 deg)
- Monitoring of Ionospheric storms, Traveling Ionospheric disturbances (TIDs), Plasma bubble, and so on.
- Global version -> DRAWING TEC project (see our ICG-12 presentation [Tsugawa et al])

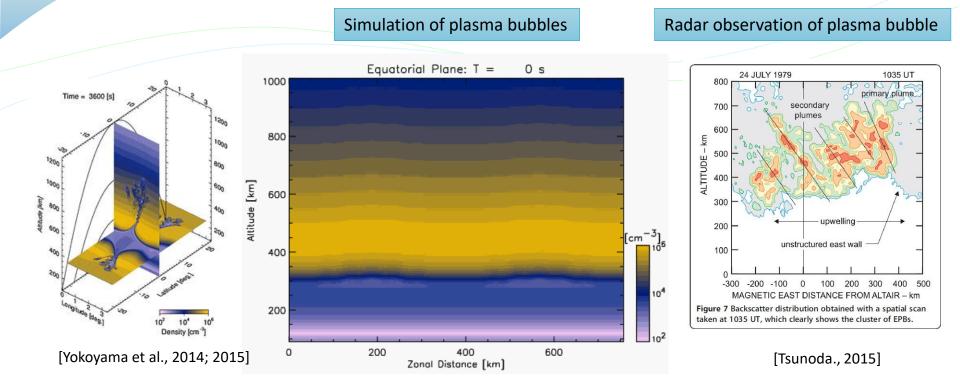

Update of GNSS-TEC Exchange Format (GTEX, v 3.0)

ſ	3.00 GTEX DATA			[G	3	RL1CL2	NC1CC2W		Z	NI		AZI		
	20180525 021508 U	тс			R	3	RL1CL2	0010020	:	Z	NI		AZI		
	16				Ε	3	RL1XL5	XC1XC5X		Z	NI		AZI		
	TEC values in 10~16 el/m^2 (1 TEC Unit)	-	-		J	3	RL1CL2	XC1CC2X		Z	NI		AZI	Hea	ider
_	Types of data = Rd Raw slant TEC including bias					30.	000							- Tieu	iuci
	derived from d				2	2018	4	17	0	0	0.00	00000	GPS		
	Ad.: Absolute slant TEC				2	2018	4	17	23	59	30.00	00000	GPS		
-	derived from d											_		- +	
	d are combination of carrier				_		4 17		0.0000	000 0	13				
	phase and pseudorange				G10	0 2	1.4241	40	.7626	238	.3033				
	ZNI: Satellite zenith angle				G12		1.7632		. 4779		.8018	а.			
	AZI: Satellite azimuth angle				G14	-	1.5530	_	. 5740		.0501	а —			
					G15		1.6359		. 3918		.8403	а —			
	Satellite System = G G GPS				R01		5.1004		. 8949		.4638				
	R.: GLONAS E : Galileo				R02		7.7056		.0021		.6347	.1			ader
	S : SBAS				R03		3.8726		. 1253		.1059				
					R11	_	0.6147		. 4903		.7255	TEC	C data sec	tion	
	J : QZSS				E03	_	2.4284		. 7892		.3641				J
	Cui BeiDou Jui IRNSS	Ho	ade		EOS		3.5361		. 4626		.0767	а. -]
	dua IRADO	inco	auc		E09		7.5795		. 4971		.3941	.1			
	OBSERVATION records format is as follow						3.5677		. 0608	37		.1			
	-Satellite number A1_I2_2				J01		2.7978		. 1784		.5812	-1			
	-m(Observation, TEC status flag) m(F10.4, I1, X1)				G10		_4 17 1.4749		0.0000		14 .9890			.1	
	TEC status flag= 0 or blank ; Normal data						1.7528		. 6676		.5400	.1			
	1.: Lack of observables(TEC=99999.99	99)			G14		1.5085				.1354	.1			
	2.: Too large TEC (TEC=99999.9999)				619	4	1.5085	69	. 3911	311	.1354				
	4.: Cycle slip (TEC discontinuity)				_										~
	5.; Cycle slip (LLI)				(.										
	6; Beginning of arc				•	· ·		is a fo	rmat	OT SI	ant I	EC da	ata		
	when set ZNI or AZI, TEC status flag is blank.						w cho	ring	lant .		orio	ic roo	searches		
	If ZNI, AZI can not be calculated, set 99999.9999.				-	E	by SIIC	ii iiig :	ant	ILC, V	ano	us res	searches		
- II	MIKB1060.180.MIKB1070.180 MIKB1080.180					v	hluov	he n	ossih	le wit	hout	affe	cted by		
	MTKB							•					,		
	JAVAD Alpha-G3T NOV750.R4 NOVS					S	pecif	ic ana	lvsis	proce	edure	s (e.a	g., bias		
	-3947739.26463364424.9821. 3699425.5842						•		•			(-)			
	0.0000 0.0000 0.0000					e	estima	ation)							
L		~~~~								ام ۲۰۰۰	-+- f.			C C	

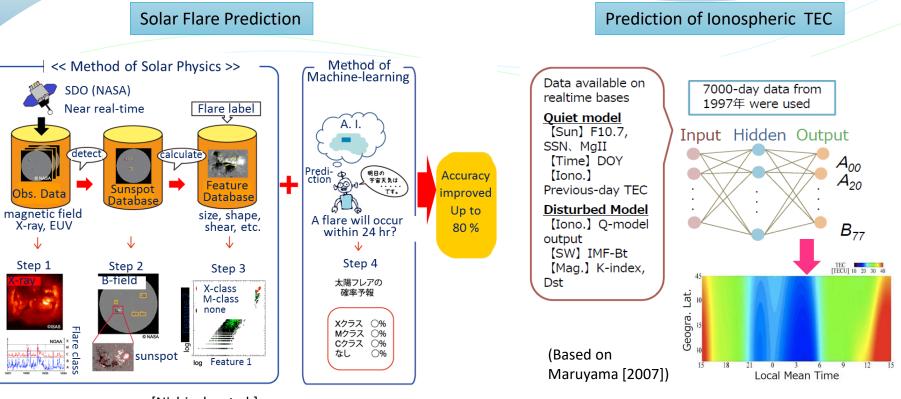
• GTEX v3.0 can treat data from multi-GNSS satellites, and the format similar to RINEX 3


7


Research for Ionospheric Forecast: Global model of Whole Atmosphere and Ionosphere


1.3E+1

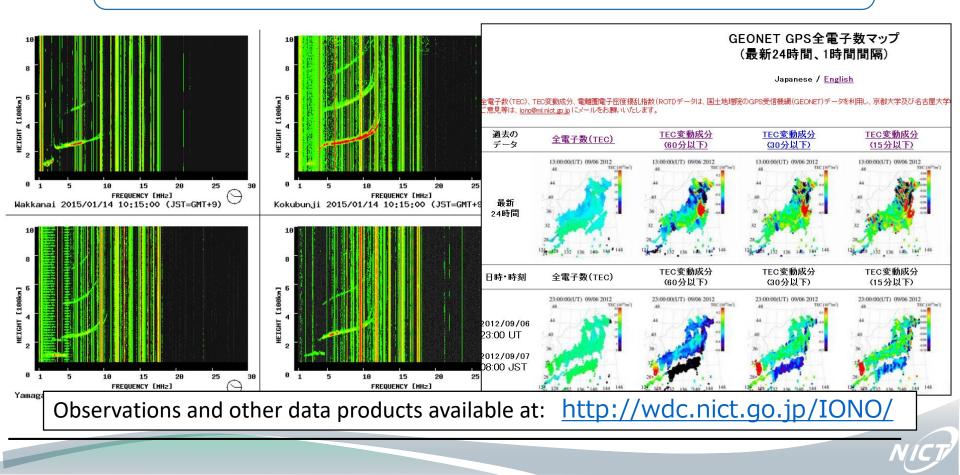
- GAIA is a 3D global model from troposphere to thermosphere and ionosphere
- GAIA reproduces meteorological phenomena, vertical coupling, neutralplasma interaction,
- Meteorological Reanalysis has been assimilated into GAIA. Assimilation of upper atmospheric observations are underway



Research for Ionospheric Forecast: Regional model of Equatorial Ionosphere

- HIRB is a high-resolution model of equatorial ionosphere, which reproduces detail structures and features of plasma bubbles
- Global-regional model coupling is on-going, and forecast of plasma bubble occurrence and growth will be treated by HIRB

Research for Space Weather Forecast: Prediction using Machine Learning Techniques


[Nishizuka et al.]

- Solar flare prediction method has been developed using deep learning technique, which gives categorical prediction with occurrence probability at each active region
- The real-time operation using Deep Flare Net (DeFN) will start in FY2018.
- Prediction of 2D TEC map against latitude and LT has been developed using a neural network technique.

10

Summary

- We are operationally providing space weather nowcast and forecast information as a member of ISES.
- The ionospheric nowcast is based on observations by ionosonde and TEC, which have long history.
- For ionospheric forecast, we are developing physics based models, machine learning models, and data assimilation.

