

Jet Propulsion Laboratory California Institute of Technology

National Aeronautics and Space Administration

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

Earth Remote Sensing using Surface-Reflected GNSS Signals (Part II)

Stephen T. Lowe

Jet Propulsion Laboratory / California Institute of Technology

Presented at: 12th Meeting of the International Committee On Global Navigation Satellite Systems Kyoto, Japan Dec 2-7, 2017

What is GNSS-Reflectometry (GNSS-R)?

From GNSS Transmitter

<u>GNSS-R</u>

- Radar with separate transmitter and receiver (bistatic radar)
- Forward-scattering
- Specular Point: Earliest arrival at receiver

Space-Based GNSS-R System

<u>GNSS-R</u>

- Multi-bistatic
- Next few years: >100 GNSS transmitters
- Dense surface coverage

Many Advantages

- Multiple, simultaneous observations
 - High spatial / temporal resolution
- Free high-quality signals
- Leveraging huge global infrastructure
- No transmitter
 - Relatively low cost, low power
 - Constellation possibilities (CyGNSS)
- Forward scattering (where the power goes)
- ~Same hardware as Radio-Occultations'

Surface Coverage

Coverage Simulation:

- 6-satellite constellation
- High inclination orbit (72 deg)
- 1 day
- GPS + Glonass + Galileo

• For delays of order $\lambda =>$ Fresnel Zone

- For delays of order τ (chip) => Iso-Delay Ellipses (code)
 - 1 MHz chip rate (GPS C/A code) => 293 m

24-25 Sept, 2008 ESTEC Noordwijk, The Netherlands GNSS-R 2008 Workshop JPL/Caltech

S. Lowe,

Receiver Effect: Velocity, Model Frequency, τ_{int} Iso-Doppler Hyperbolas

Signals arriving from forward direction arrive with higher frequency

24-25 Sept, 2008 ESTEC Noordwijk, The Netherlands GNSS-R 2008 Workshop JPL/Caltech

S. Lowe,

Smooth surface:	Higher peak, faster ri	se
Rough surface:	Lower peak, slower r	ise

GNSS-R Altimetry

Zavorotny, V. U. and A. G. Voronovich, Scattering of GPS Signals from the Ocean with Wind Remote Sensing Application, *IEEE Transactions on Geoscience and Remote Sensing*, Vol. 38, No. 2, 951-964, 2000.

Scatterometry (oceans)

- This technique measures surface Mean-Squared Slopes (MSS)
- MSS related to wind speed through empirical model

Altimetry

• Specular timing relative to direct-signal reception

What Measurements Can GNSS-R Make?

<u>Oceanography</u>

- Surface winds (CyGNSS Mission: Cyclones)
- Mesoscale topology
- Tsunami science/warning
- Geoid / Mean Sea Surface

Land

- Soil Moisture
- Wetland Extent
- Freeze/Thaw State
- Vegetation Characteristics

Cryosphere (assuming high-inclination orbit)

- Sea-Ice Extent
- Ice freeboard
- snow depth
- Ice roughness / age

Red: Demonstrated from space

Green: Ground, aircraft experiments

Mission/Satellite	Year	# Space GNSS Reflections
SIR-C	2003 (obtained)	2
SAC-C	2003	~6
UK-DMC	2007	22
TechDemoSat1	2015-2017	~100M
SMAP (GNSS-R)	2015-present	>2.3M + 2900/day
CyGNSS (8 sats)	2017-present	>125M + 0.5M/day

Explosion of data in last 2 years

CyGNSS Satellite

CyGNSS: NASA Earth Venture Mission

- \$157M to study Cyclone Science
- Goal: Improved cyclone intensity forecast
- 8 small-sats
- Observe GPS L1 C/A signals after reflecting from the ocean

Observations of Hurricane Harvey Prior to Landfall on August 25, 2017

Courtesy Chris Ruf (PI)

CYGNSS Level 3 gridded surface wind speed data product (v1.1) at 1300-1400 and 1400-1500 UTC on 25 Aug 2017, prior to landfall at ~0300 UTC on 26 Aug 2017

Delay-Doppler Map (DDM) has aliased images due to data blanking

NASA's Soil Moisture: Active & Passive (SMAP)

- Dedicated soil-moisture mission
- Active L-band radar + passive radiometer
- Radar transmitter failed 7/7/15
- On 8/20/15, radar receiver moved to collect GPS L2

Unique GNSS-R data set

- High gain antenna (~30 dB)
- Dual polarization (H/V)
- Raw sampled data downloaded
 - Look at phase, coherence, integration times, etc.
- Hope to make DDM + metadata public soon

Created unique GNSS-R data set from failed radar system

SMAP GNSS-R Observes Freeze/Thaw **Vertical Polarization** Winter Summer **Horizontal Polarization** Winter Summer Winter Temp Vegetation Type (blue frozen)

From Chew et al, Remote Sen Env 198, 2017

HydroSheds Database

CyGNSS Data: SNR vs location

White: Outside CyGNSS delay window

Amazon Rainforest

Courtesy Clara Chew (UCAR)

Change in SNR: Aug - Mar

Wetland Inundation Extent

- Connection to methane production
 Potent greenhouse gas
- Can forward-scattered GNSS-R signals penetrate vegetation to sense underlying inundation?
- May 2017 aircraft experiment: Caddo Lake LA
 - 20 dB blue to red scale
 - Light green: Giant Salvia
 - Dark green: Cypress
 - Backscatter radar shows little water

Summary

- GNSS-Reflectometry is a new Earth-remote sensing technique
- Explosive growth since 2015: TDS-1, SMAP, CyGNSS
- Many unique advantages compared to other remote sensing techniques
 - High spatial/temporal coverage, forward scattering, GNSS-RO-compatible, long-term SI-traceable signals
- Active research underway:
 - Ocean winds, soil moisture, wetland extent, freeze-thaw state, sea ice extent, ocean altimetry

Backup Slides

Global Methane Cycle

Contributions to Atmospheric Methane

- Wetlands (177-284 Tg/yr)
- Fossil Fuels (85-105 Tg/yr)
- Livestock (87-94 Tg/yr)
- Landfills (67-90 Tg/yr)

Wetlands has largest contribution Wetlands has largest uncertainty range

IPCC (2013), Climate Change 2013: *The Physical Science Basis*, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change